什么是分形?

2024-05-17 12:20

1. 什么是分形?

欧几里得的《几何原本》自公元前3世纪诞生以来直到18世纪末,在几何学领域一直是一统天下,被人们奉为圭臬与经典,但它研究的仅仅是用圆规与直尺画出的直线、圆、正方体等规则的几何形体。这类形体是光滑的,具有特征长度的,在自然界确实也有非常多的欧几里得几何对象的例子。然而在我们生存的空间,还大量存在着另一类不规则的结构与现象:云彩不是球体,山脉不是圆锥,海岸也不是折线……这些不规则图形是不能用传统的欧氏几何来准确描述的。那么对于这些看似无规律的图形和现象,我们用什么数学工具来进行描述呢科学家经过研究发现,用几何分形可以描述蕨类植物或者雪花等对象,而随机分形则可由计算机生成,用来描述熔岩流和山脉。有了分形,我们的几何学就能描述不断变化的宇宙了。那什么是分形呢分形(fractal)是曼德尔布罗特由拉丁语形容词“fractus”创造出来的一个新词,至今尚无一个科学的定义。一般来说,分形是具有如下性质的集合:
。具有精细结构,即在任意小的比例尺度内包含着整体。
。不规则,不能用传统的几何语言来描述。
。通常具有某种自相似性,或许是近似的或许是统计意义上的。
。在某种方式下定义的“分维数”通常大于其拓扑维数。
。定义常常是非常简单的,或许是递归的。
我们注意到,不论是自然界中的个体分形形态,还是数学方法产生的分形图案,都有无穷嵌套、细分再细分的自相似的几何结构。换言之,谈到分形,我们事实上是开始了一个动态过程。从这个意义上说,分形反映了结构的进化和生长过程。它刻画的不仅仅是静止不变的形态,更重要的是进化的动力学机制。生长中的植物,不断生长出新枝、新根。同样,山脉的几何学形状是以往造山运动、侵蚀等过程自然形成的,现在和今后还会不断变化。

什么是分形?

2. 什么是分形结构

对于分形目前还没有确切的定义,但是人们可以给出很多分形的特征,比如分数维,自相似性,尺度不变性,等等
 
分形结构就是研究分形的细微特征的描述, 涉及到专业的数学知识,比如拓扑结构、微分结构、奇异性结构,包括局部的测度和有限可微的特征等等。

3. 分形学是什么

分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为非负实数维数,如0.63、1.58、2.72、log2/log3(参见康托尔集)。因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。

一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。

简单的说,分形就是研究无限复杂具备自相似结构的几何学。

是大自然复杂表面下的内在数学秩序。
分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为非负实数维数,如0.63、1.58、2.72、log2/log3(参见康托尔集)。因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。

一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。

由来
分形几何学
分形几何学
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小事物的几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。

客观事物都有它自己的特征尺度,要用恰当的尺度去测量。用尺子来测量万里长城,嫌太短,而用来测量大肠杆菌,又嫌太长。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这就是“无标度性”的问题。

湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许多多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态。要描述湍流现象就需要借助流体的的“无标度性”,而湍流中高漩涡区域,就需要用到分形几何学。

分形学是什么

4. 什么是分形数学

普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。在20世纪70年代末80年代初,产生了新兴的分形几何学(fractal geometry),空间具有不一定是整数的维,而存在一个分数维数。这是几何学的新突破,引起了数学家和自然科学者的极大关注。根据物理学家李荫远院士的建议,大陆将fractal一开始就定译为“分形”,而台湾学者一般将fractal译作“碎形”。

目录

分形几何的产生
两名数学家的贡献
芒德勃罗和电子计算机对分形几何的影响
分形几何的内容
关于维数
维数和测量的关系
分形几何学的应用
分形几何的意义
 编辑本段分形几何的产生
  客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。   客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特征长度。还有的事物没有特征尺  分形几何
度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这叫做“无标度性”的问题。 如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。
编辑本段两名数学家的贡献
  在二十世纪七十年代,法国数学家芒德勃罗(B.B.Mandelbrot)在他的著作中探讨了“英国的海岸线有多长”这个问题。这依赖于测量时所使用的尺度。   如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。   数学家柯赫(Koch)从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“Koch岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。   这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。
编辑本段芒德勃罗和电子计算机对分形几何的影响
  电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。   法国数学家芒德勃罗这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在1975、1977和1982年先后用法文和英文出版了三本书,特别是《分形:形、机遇和维数》以及《自然界中的分形几何学(Fractal Geometry of Nature)》,开创了新的数学分支:分形几何学。“分形”(fractal)这个词正是芒德勃罗在1975年造出来的,词根是拉丁文的fractus,是“破碎”的意思。
编辑本段分形几何的内容
  分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为自相似性。例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
编辑本段关于维数
  维数是几何对象的一个重要特征量,它是几何对象中一个点的位置所需的独立坐标数目。在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲  分形几何作品
线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,对于更抽象或更复杂的对象,只要每个局部可以和欧氏空间对应,也容易确定维数。但通常人们习惯于整数的维数。   分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
编辑本段维数和测量的关系
  维数和测量有着密切的关系,下面我们举例说明一下分维的概念。   当我们画一根直线,如果我们用 0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是 0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为 1(大于0、小于2)。   对于我们上面提到的Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是 0(此曲线中不包含平面),那么只有找一个与“寇赫岛”曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于 1、小于 2,那么只能是小数了,所以存在分维。经过计算“寇赫岛”曲线的豪斯多夫维数(分维数)为d=log(4)/log(3)=1.26185950714...   定义 设分成的最小的闭集(区间,圆面,球体)占全集的1/δ,充满全集的最小闭集的个数为N,若极限D=(δ→0)ln(N)/ln(1/δ)存在,则称D为此集合的分形维数。
编辑本段分形几何学的应用
  分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1.   在某些电化学反应中,电极附近沉积的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。   自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。   有人研究了某些云彩边界的几何性质,发现存在从 1公里到1000公里的无标度区。小于 1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。   近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。
编辑本段分形几何的意义
  上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。   中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。   分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。 
http://baike.baidu.com/view/44498.htm

5. 什么是分形数学

三 
动力系统中的分形集是近年分形几何中最活跃和引人入胜的一个研究领域。动力系统的奇异吸引子通常都是分形集,它们产生于非线性函数的迭代和非线性微分方程中。1963年,气象学家洛伦兹(E.N.Lorenz)在研究流体的对流运动时,发现了以他的名字命名的第一个奇异吸引子,它是一个典型的分形集。 

1976年,法国天文学家伊侬(M.Henon)考虑标准二次映射迭代系统时获得伊侬吸引子。它具有某种自相似性和分形性质。1986年劳威尔(H.A.Lauwerier)将斯梅尔的马蹄映射变形成劳威尔映射,其迭代下不稳定流形的极限集成为典型的奇异吸引子,它与水平线的截面为康托集。1985年,格雷波基(C.Grebogi)等构造了一个二维迭代函数系统,其吸附界是维尔斯特拉斯函数,并得到盒维数。1985年,迈克多纳(S.M.MacDonald)和格雷波基等得到分形吸附界的三种类型: 

(1) 局部不连通的分形集; 

(2) 局部连通的分形拟圆周; 

(3) 既不局部连能又不是拟圆周。前两者具有拟自相似性。 

动力系统中另一类分形集来源于复平面上解析映射的迭代。朱利亚(G.Julia)和法图(P.Fatou)于1918-1919年间开创这一研究。他们发现,解析映射的迭代把复平面划分成两部分,一部分为法图集,另一部分为朱利亚集(J集)。他们在处理这一问题时还没有计算机,完全依赖于他们自身固有的想象力,因此他们的智力成就受到局限。随后50年间,这方面的研究没有得到什么进展。 

随着可用机算机来做实验,这一研究课题才又获得生机。1980年,曼德尔布罗特用计算机绘出用他名字命名的曼德尔布罗特集(M集)的第一张图来。1982道迪(A.Douady)构造了含参二次复映射fc ,其朱利亚集J(fc)随参数C的变化呈现各种各样的分形图象,著名的有道迪免子,圣马科吸引子等。同年,茹厄勒(D.Ruelle)得到J集与映射系数的关系,解新局面了解析映射击集豪斯道夫维数的计算问题。茄勒特(L.Garnett)得到J(fc)集豪斯道夫维数的数值解法。1983年,韦当(M.Widom)进一步推广了部分结果 。法图1926年就就开始整函数迭代的研究。1981年密休威茨(M.Misiuterwicz)证明指数映射的J集为复平面,解决了法图提出的问题,引起研究者极大兴趣。发现超越整函数的J集与有理映射J的性质差异,1984年德万尼(R.L.Devanney)证明指数映射Eλ的J(Eλ)集是康托束或复平面而J(fc)是康托尘或连通集。 

复平面上使J(fc)成为连通集的点C组成M集即曼德尔布罗特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)认为,M集的性质过去一直是并且将来继续是数学研究的一个巨大难题。通过将数学理论与计算机图形学实验加以融合,及道迪、扈巴德(H.Hubbard)等人在这方面进行的基础性研究工作,在解决这一难题方面已取得重大进展,使人们加深了对M集的了解。道迪和扈巴德1982年证明M集是连通的和单连通的,人们猜测M集是局部连通的,目前每一张计算机图形都证实了这一猜测,但至今还没有人能给予证明。M是否为弧连通,目前尚不清楚。M集边界的维数也是值得研究的问题之一。 

M集除了将J集分成连通与非连通的两类之外,还起着无穷个J集的图解目录表作用,即把M集C点周围的图形放大就是与C点有关的J集的组成部分。但这一发现的数学密性至今仍未确定,谭磊(Tan Lei)1985年证明了在每一个密休威茨点邻近M集与相关的J集之间存在着相似性。尤金斯等在M集的静电位研究中获得与自然形貌相似的分形图象。目前包括尤金斯等在内的很多研究人员都致力于借助计算机活动录象探索M集。其它一些分形集的研究工作正在取得进展。1990年德万尼通过数值实验观察到M集的复杂图形由许多不同周期的周期轨道的稳定区域共同构成。1991年黄永念运用他提出的代数分析法证明了这一事实,研究了M集及其广义情况周期轨道整体解析特性。 

巴斯莱(B.M.Barnsley)和德门科(S.Demko)1985年引入迭代函数系统,J集及其其它很多分形集都是某些迭代函数的吸引集,用其它方法产生的分形集也可用迭代函数系逼近。1988年,劳威尔通过数值研究发现毕达哥拉斯树花是一迭代函数系的J集。1985年巴斯莱等研究含参数的函数系迭代动力系统,得到M集D并D与M在连通性上的差异。在一线性映射系迭代下,可以产生著名的分形曲线——双生龙曲线。1986年水谷(M.Mitzutani)等对其动力系统进行了研究。 

一般动力系统中的分形集,其豪斯道夫维数dH难以通过理论方法或计算方法求得。对于有迭式构造的分形集,贝德浮德(T.Bedford)等在1986年已给出卓有成效的算法,但对一般非线性映射迭代动力系统产生的分形集,这些结果都难以应用,其豪斯道夫维数dH的结论与算法实际上没有。卡普兰(j.L.Kaplan)和约克(J.A.York) 1979年引入李雅普洛夫维数dL并猜测dL=dH。1981年勒拉皮尔证明dH≤dL。杨(L.S.Young)1982年证明二维情况下dH=dL。艾茄瓦(A.K.Agarwal)等1986年给出例子说明高维情形卡普兰-约克猜测不成立。这一猜测力图从动力学特征推断几何结构,其反问题是由吸引子维数推断混沌力学,这是值得研究的问题。但目前工作甚少且主要限于计算机研究。此外,含参动力系统在混沌临界态或突变处的分形集维数也有待进一步研究。 

多重分形(multifractals)是与动力系统奇异吸引子有关的另一类重要分形集,其概念首先由曼德布罗特和伦依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定义了多重分形广义维数。1988年博尔(T.Bohr)等人将拓扑熵引入多重分形的动力学描述与热力学类比。1988年,阿内多(A.Arneodo)等人将子波变换用于多重分形研究。费德(J.Feder)、特尔(T.Tel)等人进行了多重分形子集及标度指数的研究。阿姆特里卡等研究了多重分形的逆问题,提出广义配分函数,给出广义超越维数,对过去的维数进行了修正。李(J.Lee)等发现了多重分形热力学形式上的相变。1990年,伯克(C.Beck)得到广义维数的上下界和极限并研究了多重分形的均匀性量度。曼德布罗特研究了随机多重分形及负分维。1991年科维克(Z.Kov.acs)等引入双变量迭代系统,最大特征值和吉布斯势导出维数、熵、李雅普洛夫指数,提供了对多重分形相变分类的一般方案。对于多重分形相变分类的一般方案。对于多重分形目前虽已提出不少处理方法,但从数学的观点上看,还不够严格,部分问题的数学处理难度也较大。 
四 
分形理论真正发展起来才十余年,并且方兴未艾,很多方面的理论还有待进一步研究。值得注意的是,近年分形理论的应用发展远远超过了理论的发展,并且给分形的数学理论提出了更新更高的要求。各种分形维数计算方法和实验方法的建立、改进和完善,使之理论简便,可操作性强,是应用分形的科学家们普遍关注的问题。而在理论研究上,维数的理论计算、估计、分形重构(即求一动力系统,使其吸引集为给定分形集)、J集和M集及其推广形式的性质、动力学特征及维数研究将会成为数学工作者们十分活跃的研究领域。多重分形理论的完善、严格以及如何用这些理论来解决实际问题可能会引起科学家们广泛的兴趣,而动力学特征、相变和子波变换可能会成为其中的几个热点。 

在哲学方面,人们的兴趣在于自相似性的普适性,M集和J集表现出的简单性与复杂性,复数与实数的统一性,多重分形相变与突变论的关系,自组织临界(SOC)现象的刻画以及分形体系内部的各种矛盾的转化等。可以预言,一场关于分形科学哲学问题的讨论即将在国内展开

什么是分形数学

6. 什么是分形数学

分形一般是指“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少会大略)是整体缩小尺寸的形状”[1],此一性质称为自相似.分形一词是由本华·曼德博于1975年提出的,有“零碎”、“破裂”之意.
  分形一般有以下特质:[2]
  在任意小的尺度上都能有精细的结构;
  太不规则,以至难以传统欧氏几何的语言来描述;
  (至少是大略或任意地)自相似
  豪斯多夫维数会大于拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外);
  有着简单的递归定义.
  因为分形在所有的大小尺度下都显得相似,所以通常被认为是无限复杂的(以不严谨的用词来说).自然界里一定程度类似分形的事物有云、山脉、闪电、海岸线和雪片等等.但是,并不是所有自相似的东西都是分形,如实线虽然在形式上是自相似的,但却不符合分形的其他特质.
  17世纪时,数学家兼哲学家莱布尼茨思考过递回的自相似,分形的数学从那时开始渐渐地成形(虽然他误认只有直线会自相似).
  直到1872年,卡尔·魏尔施特拉斯给出一个处处连续但处处不可微的函数,在今日被认为是分形的图形才出现.1904年,科赫·范·卡区不满意魏尔施特拉斯那抽象且解析的定义,给出一个相似函数但更几何的定义,今日称之为科赫雪花.1915年瓦茨瓦夫·谢尔宾斯基造出了谢尔宾斯基三角形;隔年,又造出了谢尔宾斯基地毯.原本,这些几何分形都被认为是分形,而不如现今所认为的二维形状.1938年,保罗·皮埃尔·莱维在他的论文《Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole》中将自相似曲线的概念更进一步地推进,他在文中描述了一个新的分形曲线-莱维C形曲线.
  格奥尔格·康托尔也给出一个具有不寻常性质的实数子集-康托尔集,今日也被认为是分形.
  复平面的迭代函数在19世纪末20世纪初被儒勒·昂利·庞加莱、菲利克斯·克莱因、皮埃尔·法图和加斯东·茹利亚等人所研究,但直到现在有电脑绘图的帮忙,许多他们所发现的函数才显现出其美丽来.
  1960年代,本华·曼德博开始研究自相似,且写下一篇论文《英国的海岸线有多长?统计自相似和分数维度》.最后,1975年,曼德博提出了“分形”一词,来标记一个物件,其豪斯多夫维数会大于拓扑维数.曼德博以显著的电脑架构图像来描绘此一数学定义,这些图像有着普遍的映象;许多都基于递归,以至“分形”的一般意思.
  造法
  四个制造分形的一般技术如下:
  逃逸时间分形:由空间(如复平面)中每一点的递推关系式所定义,例如曼德博集合、茹利亚集合、火烧船分形、新分形和李奥普诺夫分形等.由一次或两次逃逸时间公式的迭代生成的二维矢量场也会产生分形,若点在此一矢量场中重复地被通过.
  迭代函数系统:这些分形都有着固定的几何替代规则.康托尔集、谢尔宾斯基三角形、谢尔宾斯基地毯、空间填充曲线、科赫雪花、龙形曲线、丁字方形、孟杰海绵等都是此类分形的一些例子.
  随机分形:由随机而无确定过程产生,如布朗运动的轨迹、莱维飞行、分形风景和布朗树等.后者会产生一种称之为树状分形的分形,如扩散限制聚集或反应限制聚集丛.
  奇异吸引子:以一个映射的迭代或一套会显出混沌的初值微分方程所产生.
  [编辑]分类
  分形也可以依据其自相似来分类,有如下三种:
  精确自相似:这是最强的一种自相似,分形在任一尺度下都显得一样.由迭代函数系统定义出的分形通常会展现出精确自相似来.
  半自相似:这是一种较松的自相似,分形在不同尺度下会显得大略(但非精确)相同.半自相似分形包含有整个分形扭曲及退化形式的缩小尺寸.由递推关系式定义出的分形通常会是半自相似,但不会是精确自相似.
  统计自相似:这是最弱的一种自相似,这种分形在不同尺度下都能保有固定的数值或统计测度.大多数对“分形”合理的定义自然会导致某一类型的统计自相似(分形维数本身即是个在不同尺度下都保持固定的数值测度).随机分形是统计自相似,但非精确及半自相似的分形的一个例子.

7. 分形的介绍

《分形(第2版)》是《分形》的第2版,第1版在1995年8月由清华大学出版社出版。《分形(第2版)》以自然界中普遍存在的非平衡非线性复杂系统中自发形成的各种时空有序状态(或结构)为研究对象,介绍了分形理论的基本概念、数学基础和研究方法,及其在凝聚态物理学、材料科学、化学、生物学、医学、地震学、经济学等学科中的应用。

分形的介绍

8. 分形的介绍

《分形(第2版)》是《分形》的第2版,第1版在1995年8月由清华大学出版社出版。《分形(第2版)》以自然界中普遍存在的非平衡非线性复杂系统中自发形成的各种时空有序状态(或结构)为研究对象,介绍了分形理论的基本概念、数学基础和研究方法,及其在凝聚态物理学、材料科学、化学、生物学、医学、地震学、经济学等学科中的应用。